in The Ohio Union

Stochastic Model of Alzheimer’s Disease Progression Using Two-State Markov Chains

Monday, July 17 at 6:00pm

SMB2023 SMB2023 Follow Monday during the "PS01" time block.
Room assignment: in The Ohio Union.
Share this

Meaghan Parks

Case Western Reserve University
"Stochastic Model of Alzheimer’s Disease Progression Using Two-State Markov Chains"
In 2016, Hao and Friedman developed a deterministic model of Alzheimer’s disease progression using a system of partial differential equations. This model describes the general behavior of the disease, however it does not incorporate the molecular and cellular stochasticity intrinsic to the underlying disease processes. Here we extend the Hao and Friedman model by modeling each event in disease progression as a stochastic Markov process. This model identifies stochasticity in disease progression, as well as changes to the mean dynamics of key agents. We find that the pace of neuron death decreases whereas the production of the two key measures of progression, Tau and Amyloid beta proteins, accelerates when stochasticity is incorporated into the model. These results suggest that the non-constant reactions and time-steps have a significant effect on the overall progression of disease.

#SMB2023 Follow
Annual Meeting for the Society for Mathematical Biology, 2023.