in The Ohio Union

Optimal controls of the mosquito-borne disease, Dengue with vaccination and control measures

Thursday, July 20 at 6:00pm

SMB2023 SMB2023 Follow Thursday during the "PS02" time block.
Room assignment: in The Ohio Union.
Share this

Saikanth Ratnavale

University of Notre Dame
"Optimal controls of the mosquito-borne disease, Dengue with vaccination and control measures"
Dengue is one of the most common mosquito-borne diseases in the world, and a person can get infected by one of the four serotypes of the virus named DENV-1, DENV-2, DENV-3, and DENV-4. After infection with one of these serotypes, an individual will maintain permanent immunity to that serotype, and partial immunity to the other three serotypes. Therefore, there is a risk of getting infected by this virus a maximum of four times, and the symptoms may vary from mild fever to high fever, bleeding, enlarged liver, and severe shock, and sometimes these symptoms may lead to death. It is obvious that the increase in the number of infected individuals makes a negative impact on a country’s economy. Hence, the use of different control measures such as mosquito repellents and the introduction of a vaccine against the virus is important in controlling the spread of the virus. In this study, I am presenting a methodology on how to estimate the optimal rate of vaccinations based on the QDENGA dengue vaccine and the optimal rate of control measures to reduce the number of new and severe dengue cases while minimizing the overall cost. In addition, this vaccine claims high protection against symptomatic disease and waning protection over time for some DENV serotypes. However, the extent to which protection against disease conditional on infection is unknown. I consider different scenarios subject to the possible combinations of vaccine protection and control measures to investigate the most effective parameter values to control the transmission of the virus. Disease forecasts including the number of newly infected individuals in each serotype, the optimal rate of control measure, and vaccinations for a period of ten years are performed with the help of computer software.
Additional authors: Alex Perkins

#SMB2023 Follow
Annual Meeting for the Society for Mathematical Biology, 2023.